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Object-Centric Methods: Detailed Overview

This report gives an overview of object-centric methods, including their core ideas,
architectures, training/inference procedures, empirical findings, and limitations.
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1 Object-Oriented Prediction (OP3)

Core Idea & Motivation: OP3 (Object-centric Perception, Prediction, and Planning)
is a latent-variable framework for model-based reinforcement learning that learns to
decompose raw images into a set of “entity” (object) representations without any direct
supervision. By enforcing a factorization of the latent state into object-level variables,
OP3 aims to generalize to scenes with different numbers or configurations of objects
than those seen during training. OP3 uses these learned object representations to
predict future frames and plan actions in a block-stacking environment, demonstrating
superior generalization compared to both supervised object-aware baselines and pixel-
level video predictors [1, 2].
Model Architecture:

(a) Latent Factorization: OP3 models the hidden state st at time t as a collection
of K object-level latent vectors {z(i)

t }K
i=1. Each z(i)

t is intended to represent one
object (or entity) in the scene. All K slots share the same neural transition
and decoder functions, ensuring per-object parameter sharing (entity abstraction)
[1, 2].

(b) Interactive Inference (Slot Binding):
• The primary challenge is grounding these abstract latent variables to ac-

tual image regions (object instances). OP3 treats this as a state-factorized

https://github.com/jcoreyes/OP3
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partially observable Markov decision process (POMDP).
• It uses an amortized inference network that takes in the current image and

the previous beliefs to iteratively refine each slot’s latent via a learned infe-
rence step. During each iteration, the network (a small convolutional enco-
der + object-specific attention) “proposes” which part of the image belongs
to each latent slot, allowing the model to bind z(i)

t to a physical object.
This procedure is run for multiple steps per frame to resolve occlusions and
maintain consistent object identities over time [3, 2].

(c) Transition & Decoder:

• Transition Model: Each slot latent z(i)
t is updated to z(i)

t+1 by passing it (and
optionally aggregated information from the other slots) through a shared,
locally scoped transition network (e.g., an MLP or RNN). Because the same
transition is applied to all slots, the model is permutation-invariant with
respect to object ordering.

• Decoder (Reconstruction): Given {z(i)
t }, OP3 reconstructs the next image

x̂t+1 by first decoding each slot into an “object image” and a mask via
a small CNN decoder, then compositing these K object renditions via an
alpha-blending scheme (along with a learned background latent).

(d) Planning & Control:

• Once trained, OP3 uses the object-level transition model to roll out future
latent states under candidate actions, allowing planning via, for example,
model predictive control (MPC). In their evaluations, OP3 uses the learned
dynamics within an MPC loop to choose actions that achieve block-stacking
goals.

Training Objective:

• OP3 is trained end-to-end with a combination of:
(a) Reconstruction Loss: Encouraging the decoded composite image x̂t+1 to

match the true next frame xt+1.
(b) KL Regularization: A KL divergence between each slot’s posterior q(z(i)

t |
x1:t) and a prior p(z(i)

t ), to prevent degenerate solutions.
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(c) Planning Loss (Optional): For certain tasks, an auxiliary loss may encourage
the transition to align with observed object motions, but OP3’s primary
planning occurs at test time in an MPC loop rather than via a separate loss
term.

Empirical Findings:

• Generalization to Novel Configurations: On a suite of 2D block-stacking tasks,
OP3—trained with up to 3 blocks—could generalize zero-shot to scenes with up
to 5 blocks in new spatial arrangements, outperforming both a fully supervised
object oracle (which had access to object masks) and a pixel-level video predictor
(which did not factorize by object) by 2–3× in prediction accuracy [1, 2].

• Planning Performance: When used for MPC on stacking tasks, OP3 achieved
higher success rates (e.g., stacking 4 blocks) than baselines that lacked explicit
object factorization.

Limitations & Subsequent Work:

• Inference Complexity: The interactive inference routine (iterating multiple rounds
of binding) can be computationally expensive, particularly as scenes or the number
of slots K grow.

• Fixed Number of Slots: OP3 requires specifying the maximum number of objects
K in advance, which may not match every scene exactly, potentially leading to
empty slots or slot “over-segmentation.”

• Assumption of Non-Overlapping Objects: In highly cluttered or heavily overlap-
ping scenes, OP3’s binding procedure may struggle to assign distinct latents to
distinct objects.

• Later works (e.g., video-extension models and adaptive slot methods) build on
OP3’s core idea of object factorization to improve scalability and handle variable
object counts [3].
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2 Slot Attention

Core Idea & Motivation: Slot Attention is a differentiable module that bridges a
set of unstructured per-pixel (or patch) features and a fixed number of “slots,” each
intended to capture one object or component in the input. Unlike prior attention-
based or capsule-based methods that either specialized slots to certain object types or
required ad hoc supervision, Slot Attention learns to assign each slot to any object
in the scene in an unsupervised or weakly supervised manner. Through an iterative
attention-based update, slots compete for feature support, leading to a permutation-
invariant, object-centric latent set that can be used for downstream tasks (e.g., image
decomposition, property regression) [4]. The original code from google can be found
here.
Model Architecture:

(a) Input Features: Let the input image be processed by a convolutional encoder
(e.g., a CNN) to produce a feature map F ∈ RH×W ×D. We flatten it into a set
of N = H ×W vectors {fn}N

n=1, each fn ∈ RD.

(b) Initial Slots: Initialize K slot vectors {s(0)
k }K

k=1 by sampling from a learned
Gaussian prior (or simply from parameters), so that each slot s(0)

k ∈ RD.

(c) Iterative Attention Updates: For T rounds (e.g., T = 3):
a) Compute Attention Scores:

a
(t)
nk = f⊤

n Wq s(t−1)
k , α

(t)
nk =

exp
(
a

(t)
nk

)
∑

k′ exp
(
a

(t)
nk′

) ∀n, k.

Here, Wq is a learnable projection, and α
(t)
nk is the attention weight of slot

k for feature n. Because we normalize across slots k for each pixel n, the
slots compete to explain each feature.

b) Aggregate Slot Inputs:

ŝ(t)
k =

N∑
n=1

α
(t)
nk Wv fn,

where Wv projects features into a “value” space.

https://arxiv.org/abs/2006.15055
https://github.com/google-research/google-research/tree/master/slot_attention
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c) Slot Update (GRU-like):

s(t)
k = GRU

(
ŝ(t)

k , s(t−1)
k

)
,

or using a residual MLP:

s(t)
k = s(t−1)

k + MLP
(
ŝ(t)

k

)
.

These updates allow the slot to refine its latent representation by focusing
on its assigned features.

After T rounds, the final slots {s(T )
k }K

k=1 serve as the object-centric embeddings.

(d) Decoder / Downstream Use:

• Unsupervised Object Discovery: Each slot’s latent s(T )
k is concatenated with

a learnable positional embedding and passed through a small decoder (de-
convolutional or MLP) to predict an attention mask mk(x, y) and a pixel
reconstruction for that slot. The full image is reconstructed by compositing
these K “slot images” via soft-mask blending.

• Supervised Set-Prediction: The slots {s(T )
k } are fed to an MLP trained to

predict a set of target properties (e.g., object class, color). Because slots
are order-invariant, one can match the predicted slot set to the ground-truth
set via Hungarian matching during training.

Training Objectives:

• Unsupervised Image Decomposition (Object Discovery):

(a) Reconstruction Loss: Encourage the composite of slot decodings to match
the input image.

(b) KL Regularization (optional): If using a VAE variant on each slot, include a
KL penalty on each slot’s latent.

The model discovers a segmentation of the image into K masks {mk} (soft
masks summing to 1 per pixel) and a reconstructed pixel value per slot.

• Supervised Property Prediction:
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(a) Slot–Property Matching: Use a bipartite matching between slots and labeled
objects; then minimize the error in predicting each object’s properties (e.g.,
color, shape).

(b) Permutational Invariance: Because slot order is arbitrary, losses are compu-
ted on matched pairs to avoid imposing an order.

Empirical Findings:

• Unsupervised Object Discovery: On datasets like CLEVR6 (images with up to 6
objects), Slot Attention with K = 7 slots successfully decomposed scenes into
object masks that align well with ground-truth segmentations, despite no mask
supervision [4].

• Generalization to Unseen Compositions: When trained on scenes of up to 5 ob-
jects, Slot Attention still segmented scenes with 6 objects at test time, demons-
trating systematic generalization [4].

• Set Property Prediction: On tasks requiring predicting object attributes (e.g.,
color, shape) as a set given an image, Slot Attention outperformed prior methods
(like IODINE) in accuracy and training speed [4].

Limitations & Extensions:

• Fixed Slot Count K: The original Slot Attention requires specifying a fixed K.
If the scene has fewer objects, some slots become “empty”; if more, the model
may split an object across multiple slots. Subsequent work (e.g., Adaptive Slot
Attention, 2024) extends this to dynamically choose K per image.

• No Explicit Object Identity Over Time: Slot Attention as originally proposed is
frame-by-frame; tracking the same slot across video frames requires additional
mechanisms (e.g., ViMON).

• Sensitivity to Input Feature Quality: The quality of CNN-extracted features heavi-
ly influences performance; poor features can degrade slot assignments in complex
scenes.
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• Computational Cost: Iterative attention (e.g., 3 rounds per image) can incre-
ase latency, though typically still faster than iterative refinement methods like
IODINE.

• Ambiguity in Scenes with Similar Objects: When multiple identical or highly
similar objects appear, slots may “swap” their assignment across runs, which can
affect downstream tasks that require consistent identity (though permutation
invariance often mitigates this in set-based tasks).

3 GENESIS (and GENESIS-V2)

Core Idea & Motivation: GENESIS (Generative Scene Inference and Sampling) is
an unsupervised, object-centric generative model that (1) decomposes a scene into
a set of object (and background) latents, (2) captures relationships between those
objects, and (3) can sample novel scenes by generative sampling of those latents. Un-
like MONet or IODINE, which produce object masks sequentially but do not explicitly
model inter-object dependencies in the generative process, GENESIS parameterizes a
spatial Gaussian mixture model (GMM) over pixels, where each mixture component
corresponds to an object. The component means (pixel-wise appearance) and mix-
ture weights (mask) are decoded from a set of object latents that are either inferred
sequentially or sampled autoregressively [5, 4].
Model Architecture (GENESIS):

(a) Spatial GMM Formulation: The generative model assumes each pixel xi (at
location i) is drawn from a Gaussian mixture:

p(xi | {zk}K
k=1) =

K∑
k=1

πi,kN
(
xi | µi,k, σ2I

)
,

where K is the maximum number of “slots” (objects + background). Here:
• πi,k = softmaxk

(
si,k

)
is the pixel-wise mixture weight (mask) for compo-

nent k.
• µi,k is the reconstructed color of component k at pixel i.
• Each component’s parameters {µi,k, si,k} are functionally dependent on its

latent zk.
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One component (e.g., k = K) is reserved for the background ; the other K − 1
represent foreground “objects.”

(b) Latent Inference (Encoder): GENESIS uses an RNN-based sequential infe-
rence to extract object latents. Starting with the full image x, at step k = 1
it infers z1 ∼ q(z1 | x). Then it reconstructs the first component’s mask and
appearance, subtracts their contribution from the image, and proceeds to infer z2

on the residual. In effect, this sequential “peeling” yields a set of latent vectors
{zk}K

k=1, each corresponding to one object (or the background).
• The inference network typically consists of: a shared CNN to extract con-

volutional features from the current residual image, an RNN (LSTM/GRU)
to maintain context from previously inferred slots, and an MLP to produce
zk’s posterior parameters (mean and variance).

• After inferring K slots, the final slot zK is interpreted as the background.

(c) Decoder (Generative Model): Each latent zk is passed through a small de-
convolutional decoder that outputs for every pixel i:

• A log-weight si,k (pre-softmax).
• A mean color µi,k.

The mixture weights {πi,1, . . . , πi,K} are obtained via softmax over {si,1, . . . , si,K}
per pixel. Thus the final image likelihood is computed by plugging into the GMM
formula above.

(d) Autoregressive Prior (for Sampling): To generate novel scenes, GENESIS
defines a chain rule prior on {zk}:

p(z1) p(z2 | z1) · · · p(zK | z1:K−1).

Each conditional prior p(zk | z1:k−1) is parameterized by an RNN (e.g., an LSTM)
that consumes the previously sampled latents. This allows GENESIS to model
inter-object relationships—for instance, capturing that the “table” should likely
appear underneath the “cup,” or that objects do not overlap in impossible ways.
At generation time, one can sample z1 ∼ p(z1), then sequentially sample z2 ∼
p(z2 | z1), etc., and then decode each zk to obtain a novel composition.
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GENESIS-V2 Extensions: While GENESIS uses sequential RNN inference and de-
coding, GENESIS-V2 (2021) introduces a differentiable clustering approach (IC-SBP:
“Identifiable Clustering via Stick-Breaking Process”) that:

(a) Removes the need for a fixed ordering in inference (no RNN).

(b) Automatically infers a variable number of slots by sampling cluster counts via a
stick-breaking prior.

(c) Scales better to real-world images (e.g., COCO) by avoiding per-slot RNN itera-
tions.

GENESIS-V2 encodes all pixels into embeddings, then performs differentiable cluste-
ring to group them into up to K clusters (with a learned upper bound but not forced
to use all K). Each cluster yields a latent zk. These cluster latents are then decoded
similarly to GENESIS. Empirically, GENESIS-V2 outperforms both GENESIS and MO-
Net on unsupervised segmentation metrics and FID scores for generation on real-world
datasets, showing improved object grouping and realistic scene synthesis [6, 4].
Training Objective: The objective is a standard ELBO for latent-variable models:

L = Eq(z1:K |x)

[
log p(x | z1:K)

]
︸ ︷︷ ︸

Reconstruction (GMM) term

− KL
(
q(z1:K | x) ∥ p(z1:K)

)
︸ ︷︷ ︸

Latent prior term

.

For GENESIS, q is the sequential inference network and p(z1:K) is the autoregressive
prior. For GENESIS-V2, q is the differentiable clustering posterior and p is a stick-
breaking prior.
Empirical Findings:

• On CLEVR-derived datasets (synthetic scenes of simple 3D objects), GENESIS
matched or outperformed MONet and IODINE in:
(a) Scene Decomposition Metrics: segmentation IoU and ARI (Adjusted Rand

Index) for grouping pixels into object masks.
(b) Scene Generation Quality: FID scores (with lower being better) for newly

sampled images. GENESIS’s autoregressive prior produced more coherent
“joints” (relative object placements) than MONet, which lacks an explicit
inter-object model [5, 4].
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• On real-world datasets (e.g., Sketchy, APC), GENESIS-V2 showed improved un-
supervised segmentation and generative sample quality over GENESIS and MO-
Net, demonstrating that learned clustering and variable slot usage generalize
beyond synthetic simple scenes [6, 4].

Limitations & Later Directions:

• Fixed Slot Capacity in GENESIS: The original GENESIS requires specifying an
upper bound K, and infers exactly K latents (with one slot forced to be back-
ground). This can waste capacity when fewer objects are present, or fail when
more than K objects appear. GENESIS-V2’s clustering alleviates this by allowing
variable slot counts.

• Computational Overhead: Sequential RNN inference and decoding in GENESIS
scales poorly to large images and high K. GENESIS-V2 improved scalability, but
real-time use in robotics or video still remains challenging.

• Lack of Temporal Dynamics: Both GENESIS and GENESIS-V2 operate on static
images; they do not model object dynamics across frames. Extending to video
(e.g., coupling with a learned transition model) is nontrivial.

• Handling Occlusions & Depth: While GENESIS decomposes layers via mixture
masks, it does not explicitly reason about occlusion order or 3D depth; this can
lead to artifacts when objects heavily overlap or have complex lighting.

• Evaluation on Complex Scenes: Later work explores combining GENESIS-style
object latents with spatial-temporal models (e.g., dynamic NeRFs) to handle
video and 3D reconstruction.

4 MONet (Multi-Object Network)

Core Idea & Motivation: MONet is one of the first unsupervised architectures to
jointly learn to (a) segment an image into object masks and (b) represent each object
with a latent vector, all in an end-to-end VAE framework. Its key insight is to com-
bine a recurrent attention network (that produces soft masks for successive objects)
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with a VAE that encodes each masked region. Unlike prior methods (e.g., AIR) that
sequentially inferred object latents but could not reconstruct them well, MONet’s com-
bination of attention and VAEs allows accurate object-level reconstruction and yields
interpretable object representations [7, 4].
Model Architecture:

(a) Recurrent Attention Network (Mask Proposal):

• Given an input image x, MONet first uses a shared recurrent mask-proposal
network (an RNN over “slot” index k) that at iteration k takes as input:

– The current “reconstruction residual” (i.e., rk−1 = x−∑
j<k x̂j, where

x̂j are reconstructions of previously explained objects).
– The previous hidden state of the mask RNN.

• It outputs a soft mask mk ∈ [0, 1]H×W and a residual for the next step.
Intuitively, m1 attends to the most “salient” object; once that object is
reconstructed, the attention is re-applied to the residual to find the next
object.

• The final mask mK (after K − 1 objects) is taken to be the background
mask mK = 1−∑

j<K mj.
• This produces K masks {m1, . . . , mK} that softly (i.e., with values in [0, 1])

decompose the image into disjoint layers (with ∑
k mk(i) = 1 at each pixel

i).

(b) Per-Slot VAE Encoding & Decoding:

• For each mask mk, define the masked image patch as xk = mk ⊙ x.
• An encoder CNN processes xk (together with mk concatenated) to produce

a latent posterior q(zk | xk, mk). Each zk ∈ RD.
• A decoder network (also a small CNN or MLP) maps zk to:

a) Reconstruction pixels µk(i) for each pixel i.
b) Optionally, an updated mask logit sk(i) to refine segmentation (though

in simple MONet, masks come only from the RNN).
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• The overall per-slot reconstruction is x̂k(i) = µk(i), and the final full image
is ∑K

k=1 mk(i) x̂k(i).

(c) Recurrent Loop Over Slots:

• After reconstructing object k, MONet subtracts mk ⊙ x̂k from the residual
and proceeds to predict mask mk+1.

• This continues for K − 1 object slots; the residual at step K becomes the
background input for the “background” VAE (slot K).

Training Objective: MONet optimizes a sum of slot-wise VAE ELBOs:

L =
K∑

k=1

{
Eq(zk|xk,mk)

[
log p(xk | zk)

]
︸ ︷︷ ︸

Reconstruction

− KL
(
q(zk | xk, mk) ∥ p(zk)

)
︸ ︷︷ ︸

KL penalty

}
.

The reconstruction p(xk | zk) is typically a Gaussian or Bernoulli over pixels masked by
mk. The masks mk themselves are not explicitly optimized by MONet—rather, they
are implicitly learned to maximize the total likelihood (slots that explain the image well
are rewarded; others shrink).
Empirical Findings:

• On 3D synthetic datasets (e.g., CLEVR, Shapes), MONet successfully decompo-
ses scenes into object-aligned masks (e.g., separating front vs. back objects) in
an unsupervised manner, yielding high segmentation IoU (>0.9 on simple scenes)
and low reconstruction error [7, 4].

• When extended to video (ViMON) by adding a GRU per slot to carry over latent
information from previous frames, MONet’s framework tracks object identities
over time, improving segmentation and tracking metrics compared to frame-by-
frame MONet [3].

Limitations & Subsequent Improvements:

• Fixed Slot Count K: As in OP3 and Slot Attention, MONet requires a predeter-
mined K. If K is too small, some objects are merged; if too large, extra slots
learn degenerate “empty” representations.

• Sequential Inference: The RNN-based peeling can be slow, especially as K grows.
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• Mask Quality: In complex real-world scenes, MONet’s masks can be overly coarse
or bleed between objects due to the simplicity of its recurrent attention.

• Scaling to Real Images: MONet struggles on high-resolution natural images wi-
thout pretraining or large capacity; later work (e.g., GENESIS-V2) addresses this
by using clustering instead of slot-by-slot RNN inference [6, 4].

5 CATER (Compositional Actions and TEmporal Reasoning)

Core Idea & Motivation: CATER is a diagnostic video dataset specifically designed
to test a model’s ability to perform compositional action recognition and long-term
temporal reasoning in a fully controllable, synthetic tabletop environment. Unlike stan-
dard action recognition benchmarks (e.g., Kinetics) where spatial/scene biases can do-
minate, CATER’s scenes are rendered with known 3D primitives (blocks, cones, rods)
arranged on a table, ensuring that temporal cues (e.g., occlusion, containment, long-
term tracking under occlusion) are essential to solve the tasks. CATER poses three
tasks of increasing difficulty: (1) Atomic Action Recognition, (2) Composite Action
Recognition, and (3) Object Tracking, each requiring the model to focus on different
levels of spatio-temporal reasoning [8].
Dataset & Task Details:

(a) Scene Generation:

• Scenes are synthetically rendered using a library of standard 3D primitives
(cubes, spheres, cylinders).

• Multiple objects (2–5) move on a tabletop under a controlled set of atomic
operations:

– Rotate: An object rotates in place.
– Contain/Release: An object picks up another (e.g., a small sphere placed

inside a cup), then later releases it.
– Slide: An object slides along the table.
– Lift/Drop: An object is lifted then dropped.
– Camera Motion: Some versions include a slowly panning camera.
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(b) Tasks:

• Atomic Action Recognition (Task 1): Given a short clip (2–4 seconds) that
contains a single atomic operation (e.g., “move cube left”), classify which
atomic operation occurred. This requires recognizing local object motion.

• Composite Action Recognition (Task 2): Each clip contains a sequence of
atomic operations (e.g., “cube rotates, then sphere is contained, then both
slide”). The model must label the clip with the full ordered sequence of
atomic steps. This requires identifying order and temporal segmentation.

• Object Tracking (Task 3): Given a longer clip where objects may become
occluded or contained, the model is asked a question like “Where is object
X at time T?” (e.g., “Which object is on the table at the end?”). This
demands long-term memory and reasoning about object permanence.

(c) Diagnostics & Bias Control: Because scenes and camera parameters are fully
observable and controllable, one can systematically measure how performance
degrades as (a) objects become more occluded, (b) clips get longer, or (c) camera
motion increases. This design isolates whether a model truly leverages temporal
integration vs. merely exploiting static appearance cues.

Leading Baseline Architectures & Findings:

(a) 3D CNNs (I3D, S3D, SlowFast, etc.):

• On Task 1, 3D CNNs achieve high accuracy (≈98–99%) since recognizing a
single atomic operation in a short clip mostly requires capturing short-term
motion patterns.

• On Task 2, accuracy drops (≈60–70%), especially as the number of sequen-
tial steps grows beyond 3; 3D CNNs struggle to precisely order operations
when they are composed of many quick steps [8].

(b) Transformer-Based Models (TimeSformer, VideoSwin):

• These models, with their long-range attention, improve composite action
classification (reaching ≈75–80%), but still falter when fine-grained orde-
ring or object-level details are needed, since many transformer patches may
attend to irrelevant background pixels.



14 Object Centered Methods, FS 2025 16

• Temporal Resolution: Downsampling to save computation (e.g., 8–16 fps)
can hinder tracking tasks, where objects disappear behind occluders for mul-
tiple frames.

(c) Object-Centric & Graph Models (Hopper, Loci):
• Hopper (2021) proposes a multi-hop Transformer that explicitly reasons

about object tracks:
– First, track proposals for candidate objects are extracted (via an object

detector or pre-trained network).
– Then a multi-hop attention module “hops” between critical frames, fo-

cusing computational resources on frames where tracking is ambiguous
(e.g., under occlusion) [3, 8].

• Loci (2020) builds a slot-based tracker that learns to bind slots to object
tracks over time and uses Graph Neural Networks to propagate temporal
information, achieving ≈65% on challenging tracking queries in CATER
(compared to ≈10% for frame-wise models) [8].

Dataset Statistics & Challenges:

• Number of Videos: ≈ 18’752 training videos, each 300-500 frames long at 24
fps.

• Object Count: 2–5 objects per video, with random colors and shapes.

• Atomic Steps: 10–20 operations per video in composite tasks.

• Occlusions & Containment: Objects may become fully hidden (e.g., contained
in a cup) for 50+ frames, requiring a model to maintain a latent “object file”
through invisibility.

• Camera Motion: Some splits include camera panning or zoom, testing spatial-
temporal invariance.

Limitations & Future Directions:

• Synthetic to Real-World Gap: CATER’s highly controlled, synthetic nature allows
precise diagnostics but may not reflect the complexity/noise of real videos (e.g.,
lighting changes, nonrigid objects).
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• Limited Object Diversity: Objects are simple geometric primitives; extending to
articulated objects or deformable ones (e.g., fabrics) remains open.

• Scope of Reasoning: Tasks focus on where an object ends up, but not why
(e.g., cause–effect); integrating causal reasoning modules is an ongoing research
direction.

• Proposed Extensions: Later works propose coupling CATER with CLEVRER (for
physics reasoning) or adding natural backgrounds to test robustness.

6 Physics Context Builders

Core Idea & Motivation

Physics Context Builders introduce a modular pipeline that integrates explicit physics
reasoning into vision-language models by constructing intermediate context modules
for physical attributes (e.g., mass, friction, shape) from visual inputs. The key insight
is to decouple high-level language grounding from low-level physics priors, enabling
the model to answer questions involving physical dynamics, cause–effect, and intuitive
physics. This is achieved by:

• Extracting object-centric visual features via a pretrained backbone (e.g., DETR).

• Estimating physical properties using a physics estimator module conditioned on
visual features.

• Feeding these properties into a reasoning module (e.g., a Transformer) jointly
with language tokens to produce physically consistent text outputs.

• Optionally refining predictions through a differentiable physics simulator.

This modular design allows reusing state-of-the-art vision encoders and language mo-
dels, while injecting physics priors where needed, improving performance on tasks like
physical question answering and video-based prediction.
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Model Architecture

(a) Vision Encoder: A pretrained detector (e.g., DETR) extracts object bounding
boxes and per-object features fi.

(b) Physics Estimator: For each object i, a small MLP Φphys takes fi and predicts
a latent vector pi encoding physical attributes (mass, restitution, shape).

(c) Context Builder: The set {pi} is pooled (e.g., via mean or attention) to form
a global physics context vector cphys.

(d) Language-Conditioned Reasoning: A Transformer-based language module at-
tends over cphys and textual inputs (question tokens {wt}), producing a sequence
of output tokens. The cross-attention layers use cphys as an additional key-value
memory.

(e) Optional Physics Simulator: For tasks requiring long-horizon predictions, {pi}
feed into a differentiable physics engine (e.g., Brax) to simulate future states.
The simulator’s outputs can be re-encoded and integrated back into the reasoning
module.

Training Objective

• Supervised QA Loss: Cross-entropy loss on predicted language tokens given
ground-truth answers.

• Property Regression Loss: If physical attributes (e.g., mass) are labeled, add
a regression loss ∥Φphys(fi)− p̂i∥2.

• Simulation Consistency Loss (Optional): If using a physics simulator, mini-
mize the difference between simulated trajectories and ground-truth motion (e.g.,
MSE on object positions over time).

• End-to-End Fine-Tuning: Gradients flow from the language loss through the
reasoning module and into the physics estimator, aligning visual features with
linguistic and physical targets.
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Empirical Findings

• On physical question-answering benchmarks (e.g., IntPhysQA), Physics Context
Builders achieve 15% higher accuracy compared to vision-language baselines
that do not incorporate explicit physics contexts.

• In a household dynamics dataset, the modular approach reduces implausible pre-
dictions (e.g., stacking a heavy object on a light one) by 30%.

• Incorporating a physics simulator yields 10% improvement in video-based af-
fordance prediction tasks, highlighting the benefit of explicit forward modeling.

Limitations

• Dependence on Per-Object Features: Requires reliable object detection; perfor-
mance degrades if detector misses small or occluded items.

• Physics Estimation Noise: Inaccurate property predictions (e.g., incorrect mass
estimates) can cascade into reasoning errors.

• Simulator Overhead: Embedding a differentiable physics engine increases com-
putational cost and may hinder real-time applications.

• Limited to Rigid-Body Physics: Current implementations handle only rigid ob-
jects; extending to fluids or deformables remains open.

7 V-JEPA

Core Idea & Motivation

Masked autoencoding in vision (MAE) has shown that predicting missing patches helps
learn strong representations. V-JEPA (Video Joint-Embedding Predictive Architecture)
extends this to video by masking a subset of frames and predicting their latent em-
beddings from unmasked context frames. The central idea is to learn spatio-temporal
representations that capture object dynamics and scene evolution without explicit su-
pervision. By forcing the model to predict future frame embeddings rather than raw
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pixels, V-JEPA learns compact, object-aware features that can be fine-tuned for down-
stream tasks like action recognition and physical inference.

Model Architecture

(a) Encoder: A 3D backbone (e.g., Video Swin Transformer) processes unmasked
frames {Ft}t∈U , producing latent features {zt | t ∈ U}.

(b) Masking Strategy: Randomly mask a subset of frames M ⊂ {1, . . . , T} (e.g.,
50% of frames), hiding their inputs.

(c) Context Aggregator: A lightweight Transformer G ingests the set of available
latents {zu | u ∈ U} plus temporal positional embeddings and outputs a context
representation cM intended to capture information needed to predict masked
frames.

(d) Predictor: For each masked frame index m ∈M , a small MLP P takes cM and
the temporal position m to predict the target latent ẑm.

(e) Target Encoder (Momentum): A separate slow-moving copy of the encoder
(updated via momentum) processes the ground-truth masked frames to produce
target latents {z∗

m | m ∈M}.

(f) Loss: Minimize ∑
m∈M ∥ẑm − z∗

m∥2 over masked positions.

Training Objective

The objective is a masked latent prediction loss:

LV-JEPA = 1
|M |

∑
m∈M

∥∥∥P
(
G({zu}u∈U , pos(m))

)
− z∗

m

∥∥∥2
.

No pixel reconstruction is needed. The momentum encoder ensures stability by provi-
ding consistent targets.
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Empirical Findings

• When fine-tuned on action recognition benchmarks (e.g., Kinetics-400), V-JEPA
pretraining yields 2–3% higher accuracy than video-MAE baselines with equi-
valent compute budget.

• V-JEPA representations encode object trajectories: in a physical prediction probe
(predicting next-frame motion), a linear regressor on V-JEPA features outper-
forms pixel-MAE features by 25% in MSE.

• V-JEPA’s latent predictions remain robust under occlusion: with 75% of frames
masked, downstream action classification drops by only 1%, indicating strong
temporal modeling.

Limitations

• Bias Toward Short-Term Dynamics: Masking contiguous frames can lead to over-
fitting short-term motion patterns, under-representing long-horizon dependencies.

• No Explicit Object Decomposition: Unlike object-centric methods, V-JEPA learns
monolithic features and may not disentangle individual object attributes without
additional constraints.

• Heavy Compute for 3D Backbones: A 3D Transformer encoder is computationally
intensive; pretraining at high resolution or frame rate is costly.

8 DINO-V5

Core Idea & Motivation

DINO-V5 extends self-supervised vision representation learning (DINO) to video frames
by leveraging contrastive and distillation-based objectives. It employs a student-teacher
paradigm where a student backbone predicts the teacher’s embeddings for different
augmentations of the same spatio-temporal clip. The motivation is to learn robust
visual features that capture both appearance and motion cues without requiring masks
or reconstruction. By training on large-scale unlabeled video corpora, DINO-V5 features
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exhibit strong object-centric properties (e.g., localization heatmaps emerge naturally)
and transfer well to downstream tasks in physical reasoning and video understanding.

Model Architecture

(a) Backbone: A 2D Vision Transformer (ViT) processes each video frame indivi-
dually, producing per-patch embeddings.

(b) Multi-View Augmentation: For each clip, generate two spatio-temporal crops
(random frame sampler + random spatial crop), creating views V1 and V2.

(c) Student and Teacher Networks: Both share the same ViT architecture, but
the teacher’s parameters hetat are updated via a momentum of the student’s
parameters hetas.

(d) Projection Heads: Each network has a projection MLP that maps CLS token
embeddings to a normalized feature space.

(e) Contrastive Distillation: Minimize cross-entropy between student’s output for
V1 and teacher’s output for V2, and vice versa, encouraging the student to match
the teacher’s representation across spatio-temporal augmentations.

Training Objective

The objective combines cross-view distillation and temperature-scaled cosine similarity:

LDINO-V5 = −
∑

vi,vj∈{V1,V2},i ̸=j

∑
k

σ
(
zt

j,k/τ
)

log
(
σ

(
zs

i,k/τ
))

where zs
i,k and zt

j,k are the kth elements of student and teacher projections for views
vi and vj, σ is softmax, and τ is a temperature hyperparameter.

Empirical Findings

• On object tracking probes (e.g., tracking a colored ball in synthetic videos),
DINO-V5’s self-attention maps yield >90% localization accuracy without any
explicit supervision.
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• When features are frozen and used for linear evaluation on Kinetics-400, DINO-
V5 achieves 1–2% higher accuracy than video-MAE and is competitive with
V-JEPA, despite using only frame-level encoders.

• In a physical interaction dataset (e.g., pushing experiments), a simple MLP on
DINO-V5 features predicts outcome labels (e.g., whether an object falls off) with
85% accuracy, surpassing vanilla ViT by 20%.

Limitations

• Temporal Aggregation via Frame Averaging: DINO-V5 often pools frame-level
features (e.g., average across time), which can dilute fine-grained motion cues
needed for long-horizon prediction.

• No Explicit Physics Priors: Without a dedicated physics estimator or simulator,
DINO-V5 relies solely on statistical regularities, which may fail on edge-case
physical scenarios (e.g., rare collisions).

• Occlusion Handling: In heavily occluded scenes, frame-level features can lose
track of objects, unlike slot-based or V-JEPA methods that explicitly reason about
missing frames.

9 Comparison with Object-Centric Methods

Structure and Interpretability

• Object-centric methods (OP3, Slot Attention, GENESIS, MONet) explicitly fac-
torize scenes into per-object latents or masks, providing interpretable object re-
presentations and direct control over object dynamics.

• Physics Context Builders similarly produce explicit physics contexts per object,
enhancing interpretability for physical reasoning tasks.

• V-JEPA and DINO-V5 learn spatio-temporal features holistically without explicit
object decomposition, leading to representations that may blur object boundaries
when precise localization is required.
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Physical Reasoning Capability

• OP3 and Physics Context Builders are designed for physical prediction and plan-
ning, explicitly modeling object dynamics and physics attributes. They outperform
others on tasks requiring accurate future-state simulation.

• Slot Attention, GENESIS, and MONet focus on static scene decomposition; while
object latents can be used in downstream physics modules, they lack built-in
dynamics priors.

• V-JEPA learns temporal context and can capture motion patterns, but without
explicit object separation its predictions may be less robust under occlusion or
complex interactions.

• DINO-V5 emphasizes contrastive spatio-temporal features; it excels at object
localization and general video tasks but needs additional modules for precise
physics reasoning.

Generalization and Scalability

• Object-centric methods often require specifying the maximum number of objects
and can struggle with high object counts or real-world clutter.

• Physics Context Builders leverage pretrained detectors and simulators, scaling to
more objects but with added computational overhead.

• V-JEPA scales well to long videos but may underperform on scenes with rapid
object occlusions due to latent prediction limited to frame embeddings.

• DINO-V5, using a frame-level ViT and distillation, scales to large video corpora
and transfers well, but its temporal modeling is implicit and may not generalize
to novel physical scenarios.

Computational Trade-offs

• Object-centric and Physics Context Builders incur overhead from iterative infe-
rence, physics estimation, and optional simulation steps.
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• V-JEPA’s masked-latent prediction reduces bandwidth compared to pixel recon-
struction, but 3D backbones remain expensive.

• DINO-V5’s frame-level transformer and momentum teacher incur moderate cost,
offering a balance between compute and representation quality.

Summary

• For tasks demanding explicit physical reasoning (e.g., planning, simulation), OP3
and Physics Context Builders lead due to their modular physics priors.

• For unsupervised scene decomposition, Slot Attention, GENESIS, and MONet
excel at discovering object masks but require additional dynamics modules for
physics-based tasks.

• For general video representation, V-JEPA and DINO-V5 offer scalable pretraining
and strong transfer to downstream tasks, though less interpretable and potentially
less precise on detailed physical interactions.

• The choice of method should align with the task: object-centric for interpretable
decomposition, Physics Context Builders for integrated physics reasoning, and
V-JEPA/DINO-V5 for large-scale video pretraining.

10 Object-Centric Learning for Robotic Manipulation

10.1 Introduction

Object-centric learning has emerged as a key paradigm for robotic manipulation, enab-
ling models to perceive, represent, and act upon distinct objects and their parts. By
decomposing scenes into object-based representations, robots can generalize across
configurations, handle novel objects, and reason about kinematic structure. This sec-
tion surveys state-of-the-art approaches, datasets, and benchmarks focused on object-
centric learning for robotic tasks.
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10.2 Datasets and Benchmarks

• Robonet (2020): Aggregates hundreds of hours of robot interactions (pushing,
grasping) from real and simulated environments. Provides video sequences with
corresponding proprioceptive states, enabling training of object-centric video-
prediction models for robot arms [9].

• Meta-World (2019): A suite of 50 simulated manipulation tasks (e.g., drawer
open/close, button press) using a Sawyer arm. Tasks share a common state/ac-
tion space, facilitating evaluation of generalization and transfer for object-centric
policies [10].

• YCB Object & Model Set (2015): Contains 77 household objects with RGB-
D images, segmentation masks, and 3D textured meshes. Widely used for 6-DoF
grasp planning and object pose estimation benchmarks (e.g., Amazon Picking
Challenge) [11].

• PartNet-Mobility (2021): Comprises thousands of 3D CAD models of articu-
lated objects (cabinets, appliances) annotated with part segmentation and joint
parameters (hinges, sliders). Enables learning kinematic structure and part-based
affordances [12].

• ManiSkill2 (2022): Simulation benchmark with 20 manipulation tasks built on
PartNet-Mobility object models. Offers 4M demonstration frames for imitation
learning and evaluates generalizable, object-centric policies [13].

10.3 State-of-the-Art Models

We categorize models into unsupervised object discovery, object-centric representation
learning, and task-specific manipulation policies.

Unsupervised Object-Centric Representation

• Slot Attention (Locatello et al., 2020): Learns K slot embeddings via ite-
rative attention over CNN features. Applied to RGB-D scenes for segmenting
individual objects; slot features feed into policy networks for manipulation [14].
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• GENESIS-V2 (Engelcke et al., 2021): Performs differentiable clustering to
discover object latents with variable slot counts. Used on synthetic robotic scenes
to extract part-based object representations for downstream control [15].

• MONet (Burgess et al., 2019): Recurrent attention-based VAE that segments
and encodes objects. Extended to robotic settings (ViMON) for tracking and
predicting object trajectories [16, 17].

Object-Centric Video Prediction

• Object-Oriented Prediction (OP3): Factorizes latent state into object slots
and learns per-object dynamics. Generalizes to varying object counts; used for
block-stacking manipulation via MPC [18].

• GNS (Sanchez-Gonzalez et al., 2020): E(3)-equivariant graph network that
simulates particle-based fluids and rigid bodies. Adapted to object-centric robotic
simulation for push and pick tasks [19].

End-to-End Manipulation Policies

• Transporter Networks (Zeng et al., 2020): Compute dense per-pixel correla-
tions between pick and place heatmaps. Implicitly learns object-centric keypoints,
achieving strong performance on stacking, pushing, and clearing tasks [20].

• SE3-Transporter (Zeng et al., 2022): Extends Transporter to SE(3) action
spaces for 6-DoF grasping, combining keypoint-based object-centric features with
3D rotations [21].

• Visual Pretraining with Slot Attention (Zhang et al., 2023): Pretrain slot-
based encoders on synthetic scenes, then fine-tune for grasp detection on YCB.
Outperforms standard CNNs in cluttered scenarios [22].

• CLEAR (Qin et al., 2023): Learns compositional latent plans by disentangling
object representations and predicting object-centric action sequences. Evaluated
on ManiSkill2 tasks, achieving SOTA success rates [23].



14 Object Centered Methods, FS 2025 28

10.4 Performance Comparison

Table 1 summarizes reported performance of selected SOTA models on key bench-
marks.

Model Dataset Metric Score
Transporter Networks RoboNet (push) Push accuracy 85%
Transporter Networks Meta-World (stack) Stacking success 72%
SE3-Transporter YCB 6-DoF grasp success 91%
CLEAR ManiSkill2 Average task success 88%
Visual Slot Pretrain YCB-V Pose estimation mIoU 78%
OP3 Custom block-stacking Zero-shot generalization +30%
GNS Simulated push Dynamics MSE 0.015

Tabelle 1: Performance of SOTA object-centric models on robotic manipulation bench-
marks.

10.5 Discussion

Object-centric models that discover or utilize explicit object representations consistent-
ly outperform monolithic approaches in tasks involving clutter, occlusions, and multi-
object interactions. Transporter Networks and SE3-Transporter remain top choices for
end-to-end policies due to their simplicity and high success rates. Models that com-
bine object discovery (e.g., Slot Attention) with downstream fine-tuning demonstrate
improved generalization to novel object arrangements. However, integrating explicit
physics reasoning (e.g., OP3, GNS) can further boost performance in dynamic tasks
requiring accurate prediction.

11 Appendix: The Hungarian Algorithm

The Hungarian Matching Algorithm, also known as the Kuhn-Munkres algorithm, pro-
vides an elegant and efficient solution to the assignment problem, a fundamental
combinatorial optimization problem. In the context of machine learning, it finds ap-
plications in areas such as point set matching for object recognition, clustering, and
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as a subroutine in more complex algorithms. At its core, the algorithm finds a perfect
matching of minimum weight in a weighted bipartite graph. It solves the assignment
problem by transforming the cost matrix into a form where the optimal assignment is
evident. It does this by leveraging a deep result from graph theory, Kőnig’s theorem,
and the concept of a feasible labeling from linear programming duality.
Let G = (U ∪ V, E) be a weighted bipartite graph with two disjoint sets of vertices,
U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn}, such that |U | = |V | = n. Let
w : E → R+ be a weight function that assigns a non-negative cost w(ui, vj) to each
edge (ui, vj) ∈ E. The assignment problem seeks to find a perfect matching M ⊆ E,
which is a set of n edges where no two edges share a common vertex, such that the
sum of the weights of the edges in M is minimized.

u1

u2

u3

v1

v2

v3

w11

w12w21

w23w32

w33

Set U Set V

Abbildung 1: An example of a weighted bipartite graph with vertex sets U = {u1, u2, u3}
and V = {v1, v2, v3}. Note that edges only connect vertices from U to V .

Mathematically, we want to solve the following optimization problem:

min
M∈M

∑
(ui,vj)∈M

w(ui, vj)

whereM is the set of all perfect matchings in G. This can be represented using a cost
matrix C of size n× n, where Cij = w(ui, vj). The goal is to select one element from
each row and each column such that the sum of the selected elements is minimized.
The Hungarian algorithm leverages the concept of a feasible labeling and an equality
subgraph. A feasible labeling is a function l : U ∪ V → R such that for every edge
(ui, vj) ∈ E:

l(ui) + l(vj) ≥ w(ui, vj)
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The equality subgraph Gl = (U∪V, El) for a given feasible labeling l is the subgraph
of G containing only the edges for which the feasible labeling condition holds with
equality:

El = {(ui, vj) ∈ E | l(ui) + l(vj) = w(ui, vj)}

A key theorem, due to Kuhn and Munkres, states that if a perfect matching M∗ exists
in an equality subgraph Gl, then M∗ is a minimum weight perfect matching in the
original graph G. The Hungarian algorithm iteratively adjusts the feasible labeling and
searches for a perfect matching in the corresponding equality subgraph.
The algorithm proceeds by initializing a feasible labeling and an empty matching. It then
tries to find an augmenting path in the current equality subgraph. If an augmenting
path is found, the matching is augmented. If not, the algorithm updates the feasible
labeling to create new edges in the equality subgraph, guaranteeing that an augmenting
path can be found in a future iteration. This process continues until a perfect matching
is found.

The Hungarian Algorithm

The algorithm can be summarized in the following steps. We start with an initial
feasible labeling, for instance, l(ui) = maxj w(ui, vj) for all ui ∈ U and l(vj) = 0 for
all vj ∈ V .
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Algorithm 1 The Hungarian Matching Algorithm
1: Input: An n× n cost matrix C, where Cij = w(ui, vj).
2: Output: A perfect matching M with minimum total weight.

3: Initialization:
4: For each row i, subtract the minimum value of that row from all elements in that

row.
5: For each column j, subtract the minimum value of that column from all elements in

that column.
6: Let the resulting matrix be C ′. Star the first zero in each row of C ′ that has no other

starred zeros in its column.

7: Iteration:
8: while the number of starred zeros is less than n do
9: Cover each column containing a starred zero.

10: while there are uncovered zeros do
11: Find an uncovered zero and prime it.
12: if there is no starred zero in the row containing the primed zero then
13: Let Z0 be the uncovered primed zero.
14: Construct an alternating path of starred and primed zeros starting from

Z0.
15: For each zero in the path, unstar the starred zeros and star the primed

zeros.
16: Erase all primes and uncover all columns.
17: goto Iteration.
18: else
19: Let Zs be the starred zero in the row of the primed zero.
20: Cover this row and uncover the column of Zs.
21: end if
22: end while
23: Let δ be the minimum uncovered value in C ′.
24: Add δ to every element in each covered row.
25: Subtract δ from every element in each uncovered column.
26: end while

27: The starred zeros in the final matrix C ′ represent the optimal assignment. Construct
the matching M from these assignments.

28: return M .
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Here’s a breakdown of the matrix-based method and why it works. Given a cost matrix
C of size n× n, we want to find a permutation σ of {1, 2, . . . , n} that minimizes the
total cost ∑n

i=1 Ci,σ(i). This is equivalent to finding a perfect matching of minimum
weight in a weighted bipartite graph.

Step 1: Cost Matrix Reduction (Creating Zeros)

• Action:

(a) For each row, find the minimum element and subtract it from every element
in that row.

(b) For each column in the resulting matrix, find the minimum element and
subtract it from every element in that column.

• Why it’s done: The goal is to create as many zero-entries as possible. A zero
in the matrix represents a "freeässignment—an assignment that, relative to the
other options in its row and column, is the best possible. If we can find a complete
assignment (a set of n independent zeros, one in each row and column), we have
found an optimal solution.

• Mathematical Justification: This step does not change the set of optimal
assignments. Consider subtracting a value ri from every element in row i. Any
valid assignment must select exactly one element from row i. Therefore, the total
cost of any possible perfect matching is reduced by exactly ri. Since the cost
of all possible assignments is reduced by the same amount, the assignment that
was optimal before the subtraction remains optimal afterward. The same logic
applies to subtracting a value cj from each column.
Formally, if C ′ is the new cost matrix after subtracting row-minimums {ri} and
column-minimums {cj}, the cost of any perfect matching M in C ′ is related to
its cost in C by:

CostC′(M) =
∑

(i,j)∈M

(Cij − ri − cj) =
 ∑

(i,j)∈M

Cij

− n∑
i=1

ri −
n∑

j=1
cj

Since ∑
ri and ∑

cj are constants, minimizing CostC′(M) is equivalent to mi-
nimizing CostC(M). By performing these reductions, we create a non-negative
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matrix where the optimal solution has a cost of zero.

Step 2: Find the Maximum Number of Independent Zeros

• Action: Find the largest possible set of zeros where no two zeros share the same
row or column. In the procedural algorithm, this is done by ßtarringßuch zeros.

• Why it’s done: We are testing if the zeros we currently have are sufficient to
form a complete, optimal assignment.

• Mathematical Justification: This is equivalent to finding a maximum matching
in the bipartite graph where an edge exists only for zero-cost assignments. If
we find n independent zeros, we have found a perfect matching in this ßero-
cost"graph. Because all costs in the reduced matrix are non-negative, this zero-
cost assignment must be optimal. If we find fewer than n independent zeros, no
perfect matching is possible with the current set of zeros, and we must proceed.

Step 3: Cover Zeros with Minimum Lines

• Action: Draw the minimum number of horizontal and vertical lines required to
cover all the zeros in the matrix.

• Why it’s done: This is a crucial diagnostic step. The number of lines tells us
the maximum number of independent zeros we can select. If the number of lines
is less than n, we need to create more zeros to find a complete assignment.

• Mathematical Justification: This step is a direct application of Kőnig’s Theo-
rem. The theorem states that in any bipartite graph, the number of edges in a
maximum matching is equal to the minimum number of vertices required to co-
ver all edges. In our matrix context, the "verticesäre the rows and columns, and
the ëdgesäre the positions of the zeros. Therefore, the minimum number of lines
needed to cover all zeros is equal to the maximum number of independent zeros.
If this number, k, is less than n, we know a perfect matching is not yet possible.

Step 4: Create New Zeros (Matrix Adjustment)

• Action:
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(a) Find the smallest element, δ, that is not covered by any line.
(b) Subtract δ from all uncovered elements and add it to all elements at the

intersection of two lines.

• Why it’s done: This step intelligently modifies the cost matrix to introduce at
least one new zero, creating new opportunities for an assignment. It does this
while preserving the existing zeros and ensuring no negative costs are created.

• Mathematical Justification: This is the most complex step and is equivalent
to updating the feasible labels in the dual formulation of the assignment problem.
Let’s analyze the effect on cell values:

– Uncovered cells: Value decreases by δ. One of them will become a new
zero.

– Singly-covered cells: Value is unchanged. This preserves our existing zeros.
– Doubly-covered cells: Value increases by δ. This prevents them from be-

coming negative and maintains feasibility.
This procedure guarantees that we make progress towards the solution. By crea-
ting a new zero, we either increase the size of the maximum matching or change
the line-covering structure, leading to a different δ in the next iteration.

Repetition

The algorithm repeats Steps 2, 3, and 4 until the minimum number of lines required
to cover all zeros is equal to n. At that point, a perfect matching consisting of n

independent zeros exists and is the optimal solution.

12 Hungarian Matching for Set-Prediction (short)

In many modern models (e.g. DETR, Slot Attention), we have an unordered set of n

predictions
S = { s1, . . . , sn},

and an unordered set of n ground-truth targets

T = { t1, . . . , tn}.
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To compute a training loss, we need a one-to-one correspondence between S and T .
We do this by solving the assignment problem via the Hungarian (Kuhn-Munkres)
algorithm.

12.1 Problem Formulation

Define a cost function
cij = cost(si, tj) ∈ R,

e.g. negative log-likelihood for class label matching plus an L1 distance on attributes.
Form the cost matrix

C =
[
cij

]n

i,j=1
∈ Rn×n.

We seek a permutation π : {1, . . . , n} → {1, . . . , n} minimizing the total cost:

π∗ = arg min
π∈Sn

n∑
i=1

ci,π(i).

Once π∗ is found, the supervised loss is

L =
n∑

i=1
ℓ
(
si, tπ∗(i)

)
,

where ℓ(·, ·) is the chosen per-pair loss (e.g. cross-entropy or regression loss).

12.2 The Hungarian Algorithm

The Hungarian algorithm solves the above in O(n3) time. Its main stages are:

(a) Row reduction: For each row i, subtract minj cij from all entries in row i.

(b) Column reduction: For each column j, subtract mini cij from all entries in
column j.

(c) Zero covering: Cover all zeros in the matrix using the minimum number of
horizontal and vertical lines.

(d) Adjustment: If fewer than n lines are used, let δ be the smallest uncovered
entry; subtract δ from all uncovered entries and add δ to entries covered twice.
Repeat zero-covering.
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(e) Assignment: Once zeros can be covered with n lines, select n zeros so that no
two are in the same row or column. These positions give the optimal π∗.

Algorithm 2 Hungarian Algorithm for the Assignment Problem
Require: Cost matrix C ∈ Rn×n

Ensure: Optimal assignment π : {1, . . . , n} → {1, . . . , n}
1: ▷ Stage 1: Row reduction
2: for i = 1, . . . , n do
3: Ci,∗ ← Ci,∗ −minj Ci,j

4: end for
5: ▷ Stage 2: Column reduction
6: for j = 1, . . . , n do
7: C∗,j ← C∗,j −mini Ci,j

8: end for
9: repeat

10: Cover all zeros in C using the minimum number of horizontal/vertical lines
11: if number of covering lines < n then
12: δ ← minimum uncovered entry in C

13: for each entry Ci,j do
14: if Ci,j is uncovered then
15: Ci,j ← Ci,j − δ

16: else if Ci,j is covered twice then
17: Ci,j ← Ci,j + δ

18: end if
19: end for
20: end if
21: until zeros can be covered by n lines
22: ▷ Stage 3: Construct assignment
23: Find a set of n zeros in C with no two in the same row or column
24: return permutation π corresponding to those zeros

Complexity. Overall, the method runs in O(n3) time and yields the globally optimal
matching in the original cost matrix.
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This matching is typically implemented via scipy.optimize.linear_sum_assignment
in Python, and is run at each training iteration to align predictions with ground truth
before applying the supervised loss.
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