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A Comparative Analysis of GraphSAGE, HAN, and HGT Graph
Neural Networks

This document provides a comparative analysis of three prominent Graph Neural
Network (GNN) architectures: Graph Sample and Aggregate (GraphSAGE), Hete-
rogeneous Graph Attention Network (HAN), and Heterogeneous Graph Transfor-
mer (HGT). We delve into their core mechanisms, such as message passing and
aggregation, highlighting their distinct approaches to learning representations on
graph-structured data. The primary focus is on how each model handles graph ho-
mogeneity and heterogeneity, their scalability, and their underlying mathematical
formulations.

1 Core GNN Concepts: Message Passing & Aggregation

At their core, most GNNs operate on a neighborhood aggregation or message passing
framework. This process allows nodes to iteratively update their feature representations
(embeddings) by incorporating information from their local neighborhoods. A single
layer of a GNN can be generally described by three key steps:

(a) Message Passing: For a target node v, each neighboring node v € N (v) ge-
nerates a "message"m,,_,. This message is typically a function of the neighbor's
feature vector h,,.

(b) Aggregation: The target node v aggregates all incoming messages from its
neighbors into a single vector, m(,). The AGGREGATE function must be permutation-
invariant (e.g., sum, mean, max) as the order of neighbors is irrelevant.

M) = AGGREGATE ({1, : u € N'(v)})

(c) Update: The node v updates its own embedding h, by combining its previous
embedding h*~! with the aggregated message MN(v)-
hi = UPDATE(hE ™ mr(w))

Here, k£ denotes the k-th layer of the GNN. The models we discuss below are
specific instantiations of this general framework.



1 Message Passing & Aggregation in GNN, HS 2025 3

’

\.

AGGREGATION

2 GraphSAGE (Graph Sample and Aggregate)

GraphSAGE [1] was designed to be a general, inductive framework that can generate
embeddings for previously unseen nodes. Its key innovation is not training on the full
graph but on sampled local neighborhoods. The primary innovation of GraphSAGE is
its inductive capability, which allows it to generalize to previously unseen nodes. This
makes it exceptionally well-suited for dynamic, large-scale graphs where the entire
graph structure is not available during training.

One of the most prominent applications is in the domain of social networks and content
recommendation. In the original paper, GraphSAGE was used for node classification
on the Reddit dataset to classify post topics [1]. A landmark industrial application is
PinSAGE, a GNN-based recommender system developed by Pinterest. PinSAGE uses
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GraphSAGE's principles to recommend "pins"(images) to users by learning embeddings
for billions of items in a dynamic web-scale graph. It effectively handles the challenge
of generating recommendations for new, unseen content on a daily basis [2]. Its success
has made it a blueprint for modern GNN-based recommender systems.

Instead of using the entire neighborhood for aggregation, GraphSAGE uniformly
samples a fixed-size set of neighbors at each layer. This ensures that the compu-
tational footprint for each node is fixed, making the model scalable to massive graphs.
GraphSAGE is primarily designed for homogeneous graphs, where all nodes and
edges are of the same type.

2.1 Mathematical Formulation

For a target node v at layer k, the process is as follows:

(a) Sample Neighborhood: Sample a fixed-size neighborhood Ng(v) from the full
set of neighbors N (v).

(b) Aggregate: Aggregate the feature vectors from the sampled neighbors. The
Mean aggregator is a common choice:
1

Mo = iy 5
0 = Nl L2,

(c) Update: Concatenate the node's own representation from the previous layer,
hE=1, with the aggregated neighbor vector. This combined vector is then passed
through a fully connected layer with a non-linear activation function o.

hk = o (W CONCAT(hE™ 1))

where W* is a trainable weight matrix for layer k.

3 HAN (Heterogeneous Graph Attention Network)

HAN [3] is specifically designed to work with heterogeneous graphs, which con-
tain multiple types of nodes and edges. It acknowledges that different types of nodes
and relationships contribute differently to a task. HAN's strength lies in its ability to
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leverage predefined semantic relationships (meta-paths) to generate task-aware node
representations in heterogeneous graphs. This is particularly useful in domains where
expert knowledge can guide the model’s focus.

The canonical application for HAN is in academic network analysis. As demonstra-
ted in the original paper, HAN can effectively classify research papers or authors in
bibliographic networks like DBLP and ACM by utilizing meta-paths such as Author-
Paper-Author (co-authorship) and Author-Paper-Subject-Paper-Author (shared
research topics) [3]. Another critical application area is fraud and anomaly detection.
In financial or e-commerce networks, relationships between users, devices, |IP addresses,
and transactions are heterogeneous. By defining meta-paths that capture known frau-
dulent patterns (e.g., User-Device-User), HAN can learn powerful embeddings to
identify malicious actors. While many industrial systems are proprietary, research from
companies like Alibaba has shown the power of heterogeneous GNNs for this purpose
[4].

HAN uses a hierarchical attention mechanism. First, node-level attention learns
the importance of different neighbors within a specific relationship type (meta-path).
Second, semantic-level attention learns the importance of the different meta-paths
themselves. A meta-path is a sequence of relations connecting two node types (e.g.,
Author — Paper — Author).

3.1 Mathematical Formulation
Let ®; be a meta-path.

(a) Node-Level Attention: For a node v and its neighbors N*i connected via
meta-path ®;, HAN learns attention weights a®i for each neighbor u € N2:.
The embedding for node v specific to this meta-path is an aggregation of its
neighbors’ features, weighted by attention:

P; P,
zvz - Z Oémi ’ hu

@.
ueN, *

(b) Semantic-Level Attention: After obtaining semantic-specific embeddings
{221 ..., 22}, HAN learns weights (3s,,...,3s,) for each meta-path. The
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final embedding Z, is a weighted sum:
P
Zv = Z 6@2' : Z:;I)Z
i=1

A meta-path is a predefined sequence of node types and edge types that describes
a composite relationship (a Bemantic path") between two nodes. For example, in a
scientific collaboration network with Authors (A), Papers (P), and Subjects (S), a
meta-path Author-Paper-Author (APA) represents the co-author relationship. An-
other meta-path, Author-Paper-Subject-Paper-Author (APSPA), could represent
the relationship between two authors who have written papers on the same subject.
HAN leverages these user-defined paths to group neighbors by semantics.

3.2 Step 1: Node-Level Attention

The first level of attention aims to answer the question: Within a single semantic
path, which neighbors are most important for a given node?

For a specific meta-path ®@;, a central node v has a set of neighbors N%. The node-level
attention mechanism learns to assign different importance weights to these neighbors.

(a) Feature Transformation: Since different node types may have different feature
spaces, their initial feature vectors (h,) are first projected into a common space
using a type-specific transformation matrix M. , where 7, is the type of node v.
For simplicity in this explanation, we assume features are already in a common
space.

(b) Attention Coefficient Calculation: For a pair of nodes (v,u) connected via
meta-path ®@;, the attention coefficient i is calculated. This measures the im-
portance of node u to node v. It is parameterized by a learnable attention vector
ag, specific to the meta-path:

eys = LeakyReLU (ag, - [Wh,|[Wh,)) (1)

where W is a shared linear transformation matrix applied to the features of each
node, and || denotes concatenation.
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(c) Normalization: The attention coefficients are then normalized across all neigh-
bors of node v using the softmax function to obtain the final attention weights
a®i. These weights represent a probability distribution of importance over the
neighbors.

P,

o, = softmax,

(et = L) 2)

Cyent xP(eu)

(d) Aggregation: Finally, the semantic-specific embedding for node v, 2%i, is com-

puted as a weighted sum of its neighbors’ transformed features.

zi=o| > ali-Wh, (3)
uGN;bi
where o is a non-linear activation function (e.g., ELU).

This process is repeated for every defined meta-path, resulting in a set of semantic-

specific embeddings for each node {221, 2%2 ... 22r}.

3.3 Step 2: Semantic-Level Attention

After obtaining different embeddings for each semantic path, the second level of
attention answers the question: For a given node, which semantic path is the most
important?

(a) Importance Weight Calculation: HAN learns the importance of each meta-
path ®; for a node v. This is achieved by first transforming each semantic-
specific embedding 2% (e.g., through a linear layer and tanh activation) and then
measuring its similarity to a shared, learnable semantic-level attention vector q.

We, = Z q tanh semz:jpi + bsem) (4)
|V| veEY

where Wy, and b, are learnable parameters, and the weights are averaged
over all nodes V in the graph.

(b) Normalization: These importance weights are also normalized using a softmax
function to obtain the final semantic weights (g, .

exp(we,)
57, explua,) 8

Bo, =
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(c) Final Aggregation: The final node embedding Z, is a weighted average of all
its semantic-specific embeddings, using the learned semantic weights 5.

P
ZU:ZB‘% 'Zg)i (6)
i=1

This final embedding Z, is a rich representation that has selectively aggregated infor-
mation from the most relevant neighbors and the most relevant relationship types.

3.4 Instructive Example: Scientific Collaboration Network

Let's consider a graph with Authors, Papers, and research Subjects. Our goal is to
generate an embedding for a target author, Dr. Eva Meyer. We define two meta-
paths:

o ®; = Author-Paper-Author (APA): Represents the co-author relationship.

o &, = Author-Paper-Subject-Paper-Author (APSPA): Represents authors
working on similar subjects.

Node-Level Attention in Action:

o For meta-path APA, Dr. Meyer's neighbors are her co-authors: Prof. Schmidt
and Dr. Chen. The node-level attention might learn that for predicting future
research topics, Prof. Schmidt's work is more influential. Thus, it assigns a hig-

‘oht. APA _ APA _ - APA
her weight: aNieer schmidt = 0-7, OMieyer.chen = 0.3. The embedding zje.e, will

therefore be heavily influenced by Prof. Schmidt's features.

o For meta-path APSPA, Dr. Meyer's neighbors are authors who publish on
the same subjects, like Dr. Lee and Prof. Ivanova. Here, the attention might

find both to be equally important, resulting in weights like afoPA = 0.5 and

Meyer,Lee
APSPA —
O'/Meyer,lvanova = 0.5.

Semantic-Level Attention in Action: Dr. Meyer now has two embeddings: zgth.,
APSPA

Meyer = (representing her subject-matter com-

(representing her collaborative circle) and z
munity).
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o If the downstream task is to recommend new collaborators, the direct co-
author relationship is likely more important. The semantic-level attention might
learn Weights: ﬁAPA = 08, 5APSPA = 0.2.

o If the task is to classify her research field, the community of authors working
on similar topics might be more telling. The weights could be: Sapa = 0.3,
Bapspa = 0.7.

APSPA

. . . APA
The final embedding Zeyer is then computed as Zyieyer = ﬁApA-zMeyer+BAp5pA-zMeyer ,

providing a task-aware representation of Dr. Meyer.

4 HGT (Heterogeneous Graph Transformer)

HGT [5] is a more recent and dynamic approach for heterogeneous graphs. It adapts
the powerful Transformer architecture to graphs, avoiding the need for pre-defined
meta-paths. HGT excels where relationships are numerous and dynamic, and defining
all meaningful meta-paths is impractical. By parameterizing its attention mechanism
based on node and edge types, it can dynamically learn the importance of different
relationships without prior specification.

Like HAN, HGT has shown state-of-the-art results in academic network analysis, par-
ticularly for node classification in large, evolving bibliographic datasets [5]. Its key
advantage is not needing to pre-specify meta-paths, allowing it to discover novel, im-
portant relationships on its own. A rapidly growing application area for HGT is in
knowledge graph completion and recommendation. In large-scale knowledge graphs
(e.g., Freebase, Wikidata) or e-commerce product graphs, the number of node and
edge types can be in the hundreds or thousands. HGT's dynamic, type-aware attention
mechanism is highly effective at modeling these complex interactions to predict missing
links or recommend products to users based on a wide variety of relationships (e.g.,
user-viewed-product, product-in-category, product-by-brand).

HGT models heterogeneity by parameterizing the weight matrices in its attention me-
chanism based on node and edge types. For any two nodes and the edge between
them, HGT computes attention in a way that is specific to their types, allowing for a
more flexible and direct modeling of interactions.
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4.1 Mathematical Formulation
The core of HGT is its Heterogeneous Mutual Attention mechanism. To calculate
the message from a source node s to a target node t at layer k:

(a) Type-Specific Projections: Project features into Query, Key, and Value vectors
using type-specific matrices. Let 7(n) be the type of node n and ¢(s,t) be the
type of edge (s,1).

Query(t) = Wgt)hf’l
Key(s) = Wini™

(b) Attention Calculation: Use a scaled dot-product attention that also incorpora-

tes an edge-type-specific matrix W ;).

T
(s, t) = softmax,en s <(Q“er>’(t)) %MSJ)KGY(S))

(c) Message Calculation & Aggregation: Aggregate messages from all neighbors.

W= 3 als,t) - (WiRk )
seN(t)

(d) Update: Use a residual connection, similar to a standard Transformer block.

h¥ = LayerNorm(h*~! + Linear(hF))

5 Conclusion

GraphSAGE, HAN, and HGT represent a clear progression in GNN design. GraphSAGE
provides a powerful and scalable baseline for homogeneous graphs. HAN introduces a
sophisticated way to handle heterogeneity by incorporating domain knowledge through
meta-paths. HGT builds upon this by removing the dependency on pre-defined meta-
paths, using a more flexible and powerful Transformer-based attention mechanism that
dynamically learns the importance of different types of relationships directly from the
graph structure. The choice between them depends on the nature of the graph data:
for simple, homogeneous graphs, GraphSAGE is a strong choice, while for complex,
heterogeneous graphs, HGT often provides superior performance due to its dynamic
and expressive architecture.
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Tabelle 1: High-level comparison of GraphSAGE, HAN, and HGT.

Feature GraphSAGE HAN HGT

Graph Type Homogeneous Heterogeneous Heterogeneous

Core Idea Scalable sampling  Hierarchical  attention Transformer-style atten-
of neighbors for over nodes and pre- tion dynamically adapt-
inductive lear- defined meta-paths. ed for node and edge ty-
ning. pes.

Neighborhood Fixed-size  uni- Full neighborhood, par- Full neighborhood.
form sample. titioned by meta-paths.

Heterogeneity Not handled. Explicitly modeled Dynamically  modeled

Key Mechanism

Assumes uniform

node/edge types.

Neighborhood

Sampling +
Aggregator (Me-
an/Pool/LSTM).

via meta-paths and
semantic-level atten-

tion.

Node-level & Semantic-

level Attention.

via type-specific pro-
jection matrices for

nodes and edges.

Mutual
Attention (Transformer-
like).

Heterogeneous
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